展开全部
∫(x+1)/(x^2-2x+5)dx
=1/2*∫(2x-2)/(x^2-2x+5)dx+∫2/(x^2-2x+5)dx
=1/2*∫[1/(x^2-2x+5)]d(x^2-2x+5)+2∫1/[(x-1)^2+2^2])d(x-1)
=1/2*ln(x^2-2x+5)+arctan[(x-1)/2]+C
=1/2*∫(2x-2)/(x^2-2x+5)dx+∫2/(x^2-2x+5)dx
=1/2*∫[1/(x^2-2x+5)]d(x^2-2x+5)+2∫1/[(x-1)^2+2^2])d(x-1)
=1/2*ln(x^2-2x+5)+arctan[(x-1)/2]+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询