已知数列{an}满足a1=2,an+1=2n+1an(n+12)an+2n,n∈N*(1)设bn=2nan,求数列bn的通项公式.(2)设c
已知数列{an}满足a1=2,an+1=2n+1an(n+12)an+2n,n∈N*(1)设bn=2nan,求数列bn的通项公式.(2)设cn=an?(n2+1)?1,d...
已知数列{an}满足a1=2,an+1=2n+1an(n+12)an+2n,n∈N*(1)设bn=2nan,求数列bn的通项公式.(2)设cn=an?(n2+1)?1,dn=2ncn?cn+1,求数列{dn}的前n项和Sn.
展开
展开全部
(1)由bn=
,bn+1=
,得到an=
,an+1=
,b1=
=1.
代入an+1=
,化为bn+1?bn=n+
.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+
+(n-2)+
+…+1+
+1
=
+
+1
=
.
(2)由(1)可得an=
=
,
∴cn=
×(n2+1)?1=2n+1-1.
∴dn=
=
=
(
?
),
∴Sn=
[(
?
)+(
?
)+…+(
?
)]
=
(
?
)
=
?
.
2n |
an |
2n+1 |
an+1 |
2n |
bn |
2n+1 |
bn+1 |
2 |
a1 |
代入an+1=
2n+1an | ||
(n+
|
1 |
2 |
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+
1 |
2 |
1 |
2 |
1 |
2 |
=
n(n?1) |
2 |
n?1 |
2 |
=
n2+1 |
2 |
(2)由(1)可得an=
2n |
bn |
2n+1 |
n2+1 |
∴cn=
2n+1 |
n2+1 |
∴dn=
2n |
cncn+1 |
2n |
(2n+1?1)(2n+2?1) |
1 |
2 |
1 |
2n+1?1 |
1 |
2n+2?1 |
∴Sn=
1 |
2 |
1 |
22?1 |
1 |
23?1 |
1 |
23?1 |
1 |
24?1 |
1 |
2n+1?1 |
1 |
2n+2?1 |
=
1 |
2 |
1 |
3 |
1 |
2n+2?1 |
=
1 |
6 |
1 |
2n+3?2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询