
在△ABC中,角A.B.C的对边分别为a.b.c且cos2C+3cosC=1.c=√7.
2个回答
展开全部
cos2C+3cosC=1
2cos²C-1+3cosC=1
2cos²C+3cosC-2=0
(cosC+2)(2cosC-1)=0
cosC+2>0
∴2cosC-1=0
∴cosC=1/2
∴C=60°
正弦定理:
a/sinA=b/sinB=c/sinC
a=csinA/sin60°=√7sinA/(√3/2) = 2√(7/3)sinA
b=2√(7/3)sinB
面积S=1/2absinC = 3√3/2
ab=3√3/sinC = 3√3/(√3/2) = 6
余弦定理:
c²=a²+b²-2abcosC=a²+b²+ab=(a+b)²-ab = 7
{ 2√(7/3)sinA+2√(7/3)sinB }² - 6 = 7
28/3{sinA+sinB }² =13
{sinA+sinB }² =39/28
sinA+sinB>0
sinA+sinB =√(39/28) = √273/14
2cos²C-1+3cosC=1
2cos²C+3cosC-2=0
(cosC+2)(2cosC-1)=0
cosC+2>0
∴2cosC-1=0
∴cosC=1/2
∴C=60°
正弦定理:
a/sinA=b/sinB=c/sinC
a=csinA/sin60°=√7sinA/(√3/2) = 2√(7/3)sinA
b=2√(7/3)sinB
面积S=1/2absinC = 3√3/2
ab=3√3/sinC = 3√3/(√3/2) = 6
余弦定理:
c²=a²+b²-2abcosC=a²+b²+ab=(a+b)²-ab = 7
{ 2√(7/3)sinA+2√(7/3)sinB }² - 6 = 7
28/3{sinA+sinB }² =13
{sinA+sinB }² =39/28
sinA+sinB>0
sinA+sinB =√(39/28) = √273/14
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询