如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E、F分别是PB、CD的中点,且PB=PC=PD=4

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E、F分别是PB、CD的中点,且PB=PC=PD=4.(1)求证:PA⊥平面ABCD;(2)... 如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E、F分别是PB、CD的中点,且PB=PC=PD=4.(1)求证:PA⊥平面ABCD;(2)求证:EF∥平面PAD;(3)求二面角A-PB-C的余弦值. 展开
 我来答
XD1329
2015-02-07 · TA获得超过100个赞
知道答主
回答量:126
采纳率:100%
帮助的人:130万
展开全部
解答:(1)证明:取BC的中点M,连结AM,PM.
∵AB=BC,∠ABC=60°,∴△ABM为正三角形,∴AM⊥BC.
又PB=PC,∴PM⊥BC,AM∩PM=M,
∴BC⊥平面PAM,PA?平面PAM,∴PA⊥BC,
同理可证PA⊥CD,
又BC∩CD=C,∴PA⊥平面ABCD.…(4分).
(2)证明:取PA的中点N,连结EN,ND.
∵PE=EB,PN=NA,∴EN∥AB,且EN=
1
2
AB

又FD∥AB,且FD=
1
2
AB
,∴EN
.
.
DF

∴四边形ENDF是平行四边形,
∴EF∥ND,而EF?平面PAD,ND?平面PAD,
∴EF∥平面PAD.…(8分)
(3)解:取AB的中点G,过G作GH⊥PB于点H,连结HC,GC.
则CG⊥AB,又CG⊥PA,PA∩AB=A,
∴CG⊥平面PAB.∴HC⊥PB,
∴∠GHC是二面角A-PB-C的平面角.
在Rt△PAB中,AB=2,PB=4,∴PA=2
3

又Rt△BHG∽Rt△BAP,∴
HG
PA
BG
PB
,∴HG=
3
2

在Rt△HGC中,可求得GC=
3

HC=
15
2
,∴cos∠GHC=
5
5

故二面角A-PB-C的余弦值为
5
5
.…(12分).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式