(1)在△ABC中,∠ABC,∠ACB的平分线相交于点O
(1)在△ABC中,∠ABC,∠ACB的平分线相交于点O(a若∠A=60°,求∠BOC的度数(b若∠A=n°,求∠BOC的度数(c若∠BOC=3∠A,求∠A的度数(2)若...
(1)在△ABC中,∠ABC,∠ACB的平分线相交于点O
(a 若∠A=60°,求∠BOC的度数
(b 若∠A=n°,求∠BOC的度数
(c 若∠BOC=3∠A,求∠A的度数
(2)若△A’B‘C’的外角平分线相交于点O‘,∠A=10°,求∠A=40°,求∠B’O‘C’的度数.
(3)说明上面(1)(2)两题中的∠BOC与∠B'O'C'有怎样的数量关系? 展开
(a 若∠A=60°,求∠BOC的度数
(b 若∠A=n°,求∠BOC的度数
(c 若∠BOC=3∠A,求∠A的度数
(2)若△A’B‘C’的外角平分线相交于点O‘,∠A=10°,求∠A=40°,求∠B’O‘C’的度数.
(3)说明上面(1)(2)两题中的∠BOC与∠B'O'C'有怎样的数量关系? 展开
2个回答
展开全部
(1)①
∵∠A=40°∴∠ABC+∠ACB=180°-∠A=180°-40°=140°∵BO、CO分别为∠ABC和∠ACB的角平分线∴∠ABO=∠1,∠ACO=∠2又∵∠ABC+∠ACB=∠ABO+∠1+∠ACO+∠2∴∠1+∠2=(∠ABC+∠ACB)/2=70°∴∠BOC=180°-(∠1+∠2)=180°-70°=110°
②
∵∠A=60°∴∠ABC+∠ACB=180°-∠A=180°-60°=120°∵BO、CO分别为∠ABC和∠ACB的角平分线∴∠ABO=∠1,∠ACO=∠2又∵∠ABC+∠ACB=∠ABO+∠1+∠ACO+∠2∴∠1+∠2=(∠ABC+∠ACB)/2=60°∴∠BOC=180°-(∠1+∠2)=180°-60°=120°
③
∵∠A=n∴∠ABC+∠ACB=180°-∠A=180°-n∵BO、CO分别为∠ABC和∠ACB的角平分线∴∠ABO=∠1,∠ACO=∠2又∵∠ABC+∠ACB=∠ABO+∠1+∠ACO+∠2∴∠1+∠2=(∠ABC+∠ACB)/2=(180°-n)/2∴∠BOC=180°-(∠1+∠2)=180°-(180°-n)/2=90+n/2
(2)
∵∠A=40°∴∠ABC+∠ACB=180°-∠A=180°-40°=140°∵∠CBD+∠BCE=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°∵BO、CO分别为∠CBD和∠BCE的角平分线∴∠1+∠2=(∠CBD+∠BCE)/2=110°∴∠BOC=180°-(∠1+∠2)=180°-110°=70°
∵∠A=40°∴∠ABC+∠ACB=180°-∠A=180°-40°=140°∵BO、CO分别为∠ABC和∠ACB的角平分线∴∠ABO=∠1,∠ACO=∠2又∵∠ABC+∠ACB=∠ABO+∠1+∠ACO+∠2∴∠1+∠2=(∠ABC+∠ACB)/2=70°∴∠BOC=180°-(∠1+∠2)=180°-70°=110°
②
∵∠A=60°∴∠ABC+∠ACB=180°-∠A=180°-60°=120°∵BO、CO分别为∠ABC和∠ACB的角平分线∴∠ABO=∠1,∠ACO=∠2又∵∠ABC+∠ACB=∠ABO+∠1+∠ACO+∠2∴∠1+∠2=(∠ABC+∠ACB)/2=60°∴∠BOC=180°-(∠1+∠2)=180°-60°=120°
③
∵∠A=n∴∠ABC+∠ACB=180°-∠A=180°-n∵BO、CO分别为∠ABC和∠ACB的角平分线∴∠ABO=∠1,∠ACO=∠2又∵∠ABC+∠ACB=∠ABO+∠1+∠ACO+∠2∴∠1+∠2=(∠ABC+∠ACB)/2=(180°-n)/2∴∠BOC=180°-(∠1+∠2)=180°-(180°-n)/2=90+n/2
(2)
∵∠A=40°∴∠ABC+∠ACB=180°-∠A=180°-40°=140°∵∠CBD+∠BCE=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°∵BO、CO分别为∠CBD和∠BCE的角平分线∴∠1+∠2=(∠CBD+∠BCE)/2=110°∴∠BOC=180°-(∠1+∠2)=180°-110°=70°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询