几个向量组线性相关怎么判断
2024-10-13 广告
令向量组的线性组合为零,研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。
当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关.
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。
扩展资料:
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。
由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。
等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。
任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。
两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
参考资料来源:百度百科——线性相关
先计算构成的三阶矩阵的行列式,如果不等于0,说明秩数=3,则三个向量线性无关.
如果三阶行列式=0,则这三个向量线性相关.
你的那个行列式=8,非零,秩数=3,所以向量线性无关.
当然也可以通过初等变换,直接算出矩阵的秩数是多少.
记住:
若秩数=向量个数,则向量组线性无关.
若秩数
1、定义法
令向量组的线性组合为零,研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向
量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。
2、向量组的相关性质
①当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要
条件是该向量组线性无关;
②当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;
③通过向量组的正交性研究向量组的相关性;
④通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;
⑤通过向量组的秩研究向量组的相关性。
判别向量组a1=(1,2,-1,5),a2=(2,-1,1,1),a3=(4,3,-1,11) 是否线性相关?
解析:
令Aa1+Ba2+Ca3=0
即A(1,2,-1,5)+B(2,-1,1,1)+C(4,3,-1,11)=(0,0,0,0)
即有:
A+2B+4C=0
2A-B-C=0
-A+B-C=0
5A+B+11C=0
若A、B、C的解不等于零,则为线性相关。