线性代数中 基础解系和特解是什么关系,这两者都是怎

 我来答
高启强聊情感
高粉答主

2021-01-04 · 关注我不会让你失望
知道大有可为答主
回答量:5789
采纳率:100%
帮助的人:142万
展开全部

齐次线性方程组的解由非齐次特解和齐次通解(即基础解系的线性组合)构成可以用初等行变换解,将(a,b)化成行阶梯型,可以同时求特解和基础解系。特解一般令自由未知量为零即可。

举个例子:

x+y+z=2

x-z=0

这里面有三个未知数但是方程只有两个,是不可能求出具体的值的只能求出x,y,z三者的关系:x=z,y=2-x。

这个关系就是基础解系,任何满足这个关系的数都是x,z的解。比如带个x=0进去,得x=0,y=2,z=2,带x=1,得x=1,y=0,z=1,这两个都是原方程组的解,称为特解。

扩展资料:

要证明一组向量为齐次线性方程组的基础解系时,必须满足以下三条:

(1)这组向量是该方程组的解;

(2)这组向量必须是线性无关组,即基础解系各向量线性无关;

(3)方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。

粒默T
2017-01-26 · TA获得超过1554个赞
知道小有建树答主
回答量:732
采纳率:70%
帮助的人:104万
展开全部
举个例子
x+y+z=2
x-z=0
这里面有三个未知数但是方程只有两个
是不可能求出具体的值的只能求出x,y,z三者的关系
x=z,y=2-x
这个关系就是基础解系,任何满足这个关系的数都是x,y,z的解
比如带个x=0进去
得x=0,y=2,z=2,
带x=1
得x=1,y=0,z=1,
这两个都是原方程组的解,称为特解
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式