可导函数的导函数一定连续吗?
展开全部
不一定。
原因如下:
可导函数的导函数不一定连续,可以有震荡间断点,例如:把f(t) =sin(1/t)*t^2的可去间断点t=0补充定义f(0) =0,得到的新函数可导,导函数在t=0处间断。
原因如下:
可导函数的导函数不一定连续,可以有震荡间断点,例如:把f(t) =sin(1/t)*t^2的可去间断点t=0补充定义f(0) =0,得到的新函数可导,导函数在t=0处间断。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你的这个问题过于笼统
既没有说定义域,也没有限制函数范围!
不过你的意思应该是“可导函数的导函数在原函数的可导定义域内一定连续吗?”
答案是肯定的。
一楼的回答肯定是错误的,因为x=0不在函数定义域内
二楼同样错误,斜率无穷大的点不存在,因为斜率垂直X轴的那个点就是他所说的斜率无穷大的点,这点明显不可取即不在定义域内!
如果你碰到给了函数表达式的题目,可用定义法证明!
既没有说定义域,也没有限制函数范围!
不过你的意思应该是“可导函数的导函数在原函数的可导定义域内一定连续吗?”
答案是肯定的。
一楼的回答肯定是错误的,因为x=0不在函数定义域内
二楼同样错误,斜率无穷大的点不存在,因为斜率垂直X轴的那个点就是他所说的斜率无穷大的点,这点明显不可取即不在定义域内!
如果你碰到给了函数表达式的题目,可用定义法证明!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可导必连续,连续不一定可导。
如果可导函数的导函数依然可导,则它是连续的,反之,则不一定连续。
如果可导函数的导函数依然可导,则它是连续的,反之,则不一定连续。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个可不一定了,导数存在只能说明函数在定义域内是连续的一但不能保证导函数也连续
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询