已知关于x的一元二次方程(b-c)x²;+(c-b)x+(a+b)=0有两个相等的实数根。求证:2b=a+c
7个回答
展开全部
一元二次方程(b-c)x²+(c-a)x+(a+b)=0有两个相等的实数根,
则有:b-c≠0,而且有:
判别式 = (c-a)²-4(b-c)(a+b) = 0
c²-2ac+a²-4ab+4ac-4b²+4bc = 0
a²+2ac+c²-4ab-4b²+4bc = 0
(a+c)²-4b²-4b(a-c) = 0
如果2b=a+c,则(a+c)²-4b²=0,还得有a=c才成立。
(已知条件得不到a=c,题目还是有误吧)
则有:b-c≠0,而且有:
判别式 = (c-a)²-4(b-c)(a+b) = 0
c²-2ac+a²-4ab+4ac-4b²+4bc = 0
a²+2ac+c²-4ab-4b²+4bc = 0
(a+c)²-4b²-4b(a-c) = 0
如果2b=a+c,则(a+c)²-4b²=0,还得有a=c才成立。
(已知条件得不到a=c,题目还是有误吧)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询