5个回答
展开全部
此题可用反证法进行证明,具体证明过程如下:
假设根号2是有理数,则根号2可以表示为一个分数,因为任何一个有理数都可以表示为分数形式,不妨设根号2=A/B,其中A、B都是正整数,且为最简,即不能再约分(即A、B只能一个为奇数,一个为偶数),很显然,B≠1;
则两边分别平方,可得2=A²/B²
即A²可被B²整除,分两种情况考虑
1、A为奇数、B为偶数,此时A²仍为奇数、B²仍为偶数,这时A²显然不能被B²整除,即这种情况不满足题意;
2、A为偶数、B为奇数,此时A能被2整除,则A²能被4整除,则A²/2仍为偶数,而根据假设A²/2=B²,此时B²应为奇数;但该情况时B为奇数,B²则也为奇数,即不满足题意。
综合考虑,由假设得出的结论均存在矛盾,则证明假设错误,原命题正确。
即根号2为无理数是正确的。
假设根号2是有理数,则根号2可以表示为一个分数,因为任何一个有理数都可以表示为分数形式,不妨设根号2=A/B,其中A、B都是正整数,且为最简,即不能再约分(即A、B只能一个为奇数,一个为偶数),很显然,B≠1;
则两边分别平方,可得2=A²/B²
即A²可被B²整除,分两种情况考虑
1、A为奇数、B为偶数,此时A²仍为奇数、B²仍为偶数,这时A²显然不能被B²整除,即这种情况不满足题意;
2、A为偶数、B为奇数,此时A能被2整除,则A²能被4整除,则A²/2仍为偶数,而根据假设A²/2=B²,此时B²应为奇数;但该情况时B为奇数,B²则也为奇数,即不满足题意。
综合考虑,由假设得出的结论均存在矛盾,则证明假设错误,原命题正确。
即根号2为无理数是正确的。
展开全部
无理数时指无限不循环小数,如果时有理数,可以写成分母形式,根号二写不了咯,所以就是无理数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
假设根号2是有理数
有理数可以写成一个最简分数
及两个互质的整数相除的形式
即根号2=p/q
pq互质
两边平方
2=p^2/q^2
p^2=2q^2
所以p^2是偶数
则p是偶数
令p=2m
则4m^2=2q^2
q^2=2m^2
同理可得q是偶数
这和pq互质矛盾
所以假设错误
所以根号2是无理数
有理数可以写成一个最简分数
及两个互质的整数相除的形式
即根号2=p/q
pq互质
两边平方
2=p^2/q^2
p^2=2q^2
所以p^2是偶数
则p是偶数
令p=2m
则4m^2=2q^2
q^2=2m^2
同理可得q是偶数
这和pq互质矛盾
所以假设错误
所以根号2是无理数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
20190821 数学04
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
反证法如下:
假如根号2是有理数,那么它一定可以用一个最简的(不能再约分的)分数m/n表示,也就是m、n的最大公约数是1
则:m^2/n^2=2
所以m^2=2*n^2,所以m^2是偶数
偶数的平方一定是偶数,反之亦然,若一个偶数是完全平方数,那它的平方根也一定是偶数,所以m是偶数
假设m=2k,,k是整数。那么2*n^2=(2k)^2=4*k^2
所以n^2=2*k^2,与上面同理
所以说n也是偶数
既然m,n都是偶数,那么m/n就不是最简分数,它们的最大公约数就不是1,至少2也是它们的公约数,很显然2>1,与原题设的1是它们的最大公约数矛盾
故根号2是无理数
提高一下,如何证明根号3也是无理数呢?楼主自己去考虑
假如根号2是有理数,那么它一定可以用一个最简的(不能再约分的)分数m/n表示,也就是m、n的最大公约数是1
则:m^2/n^2=2
所以m^2=2*n^2,所以m^2是偶数
偶数的平方一定是偶数,反之亦然,若一个偶数是完全平方数,那它的平方根也一定是偶数,所以m是偶数
假设m=2k,,k是整数。那么2*n^2=(2k)^2=4*k^2
所以n^2=2*k^2,与上面同理
所以说n也是偶数
既然m,n都是偶数,那么m/n就不是最简分数,它们的最大公约数就不是1,至少2也是它们的公约数,很显然2>1,与原题设的1是它们的最大公约数矛盾
故根号2是无理数
提高一下,如何证明根号3也是无理数呢?楼主自己去考虑
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询