
2个回答
展开全部
Sn=A1B1+A2B2+……+AnBn
=1/2+2/4+3/8+……+n/2^n
两边同乘2
2Sn=1+2/2+3/4+……+n/2^(n-1)
两式错位相减
2Sn-Sn=1+[(2/2-1/2)+(3/4-2/4)+……+(n/2^(n-1)-(n-1)/2^(n-1))]-n/2^n
=1+1/2+1/4+……+1/2^(n-1)-n/2^n
=1(1-1/2^n)/(1-1/2)-n/2^n
=2-(n+2)/2^n
=1/2+2/4+3/8+……+n/2^n
两边同乘2
2Sn=1+2/2+3/4+……+n/2^(n-1)
两式错位相减
2Sn-Sn=1+[(2/2-1/2)+(3/4-2/4)+……+(n/2^(n-1)-(n-1)/2^(n-1))]-n/2^n
=1+1/2+1/4+……+1/2^(n-1)-n/2^n
=1(1-1/2^n)/(1-1/2)-n/2^n
=2-(n+2)/2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询