数学就剩这道题,证明恒等式,1+sin4θ-cos4θ/2tanθ=1+sin4θ+cos4θ/1-tan²θ..
2个回答
展开全部
首先,记得加小括号。
要证 (1+sin4θ-cos4θ)/2tanθ=(1+sin4θ+cos4θ)/1-tan²θ
只要证 (1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=2tanθ/1-tan²θ
上式右边等于tan2θ
只要证(1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=tan2θ
又 1+sin4θ-cos4θ=(1-cos4θ)+sin4θ=2sin²2θ+2sin2θcos2θ=2sin2θ(sin2θ+cos2θ)
1+sin4θ+cos4θ=(1+cos4θ)+sin4θ=2cos²2θ+2sin2θcos2θ=2cos2θ(sin2θ+cos2θ)
两式相除 =tan2θ
证毕。
请采纳。
要证 (1+sin4θ-cos4θ)/2tanθ=(1+sin4θ+cos4θ)/1-tan²θ
只要证 (1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=2tanθ/1-tan²θ
上式右边等于tan2θ
只要证(1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=tan2θ
又 1+sin4θ-cos4θ=(1-cos4θ)+sin4θ=2sin²2θ+2sin2θcos2θ=2sin2θ(sin2θ+cos2θ)
1+sin4θ+cos4θ=(1+cos4θ)+sin4θ=2cos²2θ+2sin2θcos2θ=2cos2θ(sin2θ+cos2θ)
两式相除 =tan2θ
证毕。
请采纳。
展开全部
[1+sin(4θ)-cos(4θ)]/[1+sin(4θ)+cos(4θ)]
=[2sin²(2θ)+2sin(2θ)cos(2θ)]/[2cos²(2θ)+2sin(2θ)cos(2θ)]
=2sin(2θ)[sin(2θ)+cos(2θ)]/2cos(2θ)[sin(2θ)+cos(2θ)]
=sin(2θ)/cos(2θ)
=tan(2θ)=2tanθ/(1-tan²θ)
[1+sin(4θ)-cos(4θ)]/(2tanθ)=[1+sin(4θ)+cos(4θ)]/(1-tan²θ)
解题过程中有平方符号,如果手机上看不到,请到电脑上看解题过程。
=[2sin²(2θ)+2sin(2θ)cos(2θ)]/[2cos²(2θ)+2sin(2θ)cos(2θ)]
=2sin(2θ)[sin(2θ)+cos(2θ)]/2cos(2θ)[sin(2θ)+cos(2θ)]
=sin(2θ)/cos(2θ)
=tan(2θ)=2tanθ/(1-tan²θ)
[1+sin(4θ)-cos(4θ)]/(2tanθ)=[1+sin(4θ)+cos(4θ)]/(1-tan²θ)
解题过程中有平方符号,如果手机上看不到,请到电脑上看解题过程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询