已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边B
已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h...
已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”.请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.
展开
展开全部
解答:解:(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.
理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2+h3=AN+MN=AM=h,
即h1+h2+h3=h.
(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2-h3=h.
理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2-h3=AN-MN=AM=h,
即h1+h2-h3=h.
理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2+h3=AN+MN=AM=h,
即h1+h2+h3=h.
(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2-h3=h.
理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2-h3=AN-MN=AM=h,
即h1+h2-h3=h.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询