已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N+),且a1,a2,a4成等比数列(1)求数列{an}的通项公
已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N+),且a1,a2,a4成等比数列(1)求数列{an}的通项公式an.(2)若数列{bn}满足:bn...
已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N+),且a1,a2,a4成等比数列(1)求数列{an}的通项公式an.(2)若数列{bn}满足:bn+1=bn2-(n-2)bn+3,且b1≥1,n∈N+①用数学归纳法证明:bn≥an②记Tn=13+b1+13+b2+13+b3+…+13+bn,证明:Tn<12.
展开
展开全部
(1)∵a1=1,2an+1=an+an+2(n∈N+)
∴数列{an}是以1为首项的等差数列,设公差为d,由数列递增可知d>0
∵a1,a2,a4成等比数
∴(1+d)2=1+3d
∴d=0(舍)或d=1
∴an=1+n-1=n
证明:(2)①∵bn+1=bn2-(n-2)bn+3,且b1≥1,
(i)当n=1时,b1≥1=a1成立
(ii)假设当n=k(k≥1)时成立,即bk≥ak=k
∴bk+1≥k+1=ak+1
当n=k+1时,bk+1=bk2-(k-2)bk+3,
∴bk+1-ak+1=bk+1-(bk+1)=bk2?(k?1)bk+2>k2-k(k-1)+2>0
∴bk+1≥ak+1
综上可证得,对于任意的正整数n,bn≥an都成立
②∵bn+1=bn2-(n-2)bn+3,∴
=
,
bn2-(n-2)bn+6=bn(bn+2-n)+6≥2bn+6=2(bn+3),(∵bn≥n)
∴
≤
?
,
∴Tn=
+
+
+…+
≤
+
?
+
?
+…+
?
…①
∴?
Tn=?
?
?
?
?
?
∴数列{an}是以1为首项的等差数列,设公差为d,由数列递增可知d>0
∵a1,a2,a4成等比数
∴(1+d)2=1+3d
∴d=0(舍)或d=1
∴an=1+n-1=n
证明:(2)①∵bn+1=bn2-(n-2)bn+3,且b1≥1,
(i)当n=1时,b1≥1=a1成立
(ii)假设当n=k(k≥1)时成立,即bk≥ak=k
∴bk+1≥k+1=ak+1
当n=k+1时,bk+1=bk2-(k-2)bk+3,
∴bk+1-ak+1=bk+1-(bk+1)=bk2?(k?1)bk+2>k2-k(k-1)+2>0
∴bk+1≥ak+1
综上可证得,对于任意的正整数n,bn≥an都成立
②∵bn+1=bn2-(n-2)bn+3,∴
1 |
3+bn+3 |
1 |
bn2?(n?2)bn+6 |
bn2-(n-2)bn+6=bn(bn+2-n)+6≥2bn+6=2(bn+3),(∵bn≥n)
∴
1 |
bn+1+3 |
1 |
2 |
1 |
bn+3 |
∴Tn=
1 |
3+b1 |
1 |
3+b2 |
1 |
3+b3 |
1 |
3+bn |
1 |
3+b1 |
1 |
2 |
1 |
3+b1 |
1 |
2 |
1 |
3+b2 |
1 |
2 |
1 |
3+bn?1 |
∴?
1 |
2 |
1 |
2 |
1 |
3+b1 |
1 |
2 |
1 |
3+b2 |
1 |
2 |