已知m、n是方程x2-2010x+2011=0的两根,则(n2-2011n+20...
已知m、n是方程x2-2010x+2011=0的两根,则(n2-2011n+2012)与(m2-2011m+2012)的积是_____....
已知m、n是方程x2-2010x+2011=0的两根,则(n2-2011n+2012)与(m2-2011m+2012)的积是_____.
展开
1个回答
展开全部
2
由m、n是方程x2-2010x+2011=0的两根,根据方程根的定义与一元二次方程根与系数的关系,即可得n2-2010n+2011=0,m2-2010m+2011=0,m+n=2010,mn=2011,又由(n2-2011n+2012)•(m2-2011m+2012)=(n2-2010n+2011+1-n)•(m2-2010m+2011+1-m),即可求得答案.
∵m、n是方程x2-2010x+2011=0的两根,
∴n2-2010n+2011=0,m2-2010m+2011=0,m+n=2010,mn=2011,
∴(n2-2011n+2012)•(m2-2011m+2012)=(n2-2010n+2011+1-n)•(m2-2010m+2011+1-m)=(1-n)(1-m)=1-(m+n)+mn=1-2010+2011=2.
故答案为:2.
由m、n是方程x2-2010x+2011=0的两根,根据方程根的定义与一元二次方程根与系数的关系,即可得n2-2010n+2011=0,m2-2010m+2011=0,m+n=2010,mn=2011,又由(n2-2011n+2012)•(m2-2011m+2012)=(n2-2010n+2011+1-n)•(m2-2010m+2011+1-m),即可求得答案.
∵m、n是方程x2-2010x+2011=0的两根,
∴n2-2010n+2011=0,m2-2010m+2011=0,m+n=2010,mn=2011,
∴(n2-2011n+2012)•(m2-2011m+2012)=(n2-2010n+2011+1-n)•(m2-2010m+2011+1-m)=(1-n)(1-m)=1-(m+n)+mn=1-2010+2011=2.
故答案为:2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询