(22)
分母
ln(1+x)= x+o(x)
√(1+x^2) = 1+(1/2)x^2+o(x^2)
x+√(1+x^2) = 1+x +o(x)
ln[x+√(1+x^2)] = ln[1+x +o(x)] = x+o(x)
分子
ln(1+x) = x-(1/2)x^2+o(x^2)
x+√(1+x^2) = 1+x +(1/2)x^2 +o(x^2)
ln[x+√(1+x^2)]
=ln[1+x +(1/2)x^2 +o(x^2)]
=[x +(1/2)x^2 +o(x^2)] -(1/2)[x +(1/2)x^2 +o(x^2)]^2 +o(x^2)
=[x +(1/2)x^2 +o(x^2)] -(1/2)[x^2+o(x^2)] +o(x^2)
=x +o(x^2)
ln(1+x) -ln[x+√(1+x^2)]
= [x-(1/2)x^2+o(x^2)]-[x +o(x^2)]
=-(1/2)x^2+o(x^2)
//
lim(x->0) { 1/ln[x+√(1+x^2)] -1/ln(1+x) }
=lim(x->0) { ln(1+x) -ln[x+√(1+x^2)] }/{ ln[x+√(1+x^2)].ln(1+x) }
=lim(x->0) { ln(1+x) -ln[x+√(1+x^2)] }/x^2
=lim(x->0) -(1/2)x^2/x^2
=-1/2