伴随矩阵的秩和原矩阵的关系是什么?
展开全部
如下:
设A是n阶矩阵,A*是A的伴随矩阵,两者的秩的关系如下:
r(A*) = n, 若r(A)=nr(A*)=1, 若r(A)=n-1,
r(A*)=0,若r(A)<n-1。
证明如下所示:
若秩r(A)=n,说明行列式|A|≠0,说明|A*|≠0,所以这时候r(A*)=n。
若秩r(A)<n-1,说明,行列式|A|=0,同时,矩阵A中所有n-1阶子式均为0,即行列式|A|的所有代数余子式均为0,所以这时候r(A*)=0。
若秩r(A)=n-1,说明,行列式|A|=0,但是矩阵A中存在n-1阶子式不为0,对此有:AA*=|A|E=0。
从而r(A)+r(A*)小于或等于n,也就是r(A*)小于或等于1,又因为A中存在n-1阶子式不为0,所以Aij≠0,得r(A*)大于或等于1,所以最后等于1。
相关信息:
如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。
比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询