怎样定义不相关和独立随机变量?
1个回答
展开全部
语义上来讲,独立是指变量之间完全没有关系,但是不相关则仅要求变量之间没有线性关系,因而独立的要求更高,独立的变量一定是不相关的,但是不相关的不一定是独立的,即独立是不相关的充分不必要条件。
举例说明:X,Y均匀分布在单位圆上,因为是圆是对称的,画一条线性回归的线,线的斜率可以为任意值且均匀分布。所以X和Y是不相关的,但是X,Y不是独立的,因为X、Y的取值对彼此有决定性影响。
扩展资料:
随机变量的类型:
1、离散型
离散型随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
2、连续型
连续型随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
参考资料来源:百度百科-独立随机变量
参考资料来源:百度百科-不相关随机变量
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询