数学证明题:当n为正整数时,n^3-n的值必是6的倍数.证明.

 我来答
世纪网络17
2022-05-12 · TA获得超过5942个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:141万
展开全部
数学归纳法
(1)当n=1时 1^3-1=0 能被6整除
当n=2时 2^3-2=6 能被6整除
(2)假设当n=k时(k为正整数) k^3-k能被6整除
则当n=k+1时 (k+1)^3-(k+1)=(k+1)[(k+1)^2-1]=(k+1)(k+2)k
k(k+1)(k+2)为连续三个正整数的乘积
连续三个正整数中必有一个3的倍数 至少有一个为偶数
所以k(k+1)(k+2)中有2和3两个因子 一定能被6整数
综合(1)(2)可知 对于任意正整数n^3-n必是6的倍数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式