已知abc均为正实数,且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)大于等于8
4个回答
展开全部
1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a。
1/b-1=(c+a)/b≥2【√(ca)】/b。
1/c-1=(a+b)/c≥2【√(ab)】/c。
(1/a-1)(1/b-1)(1/c-1)≥2【√(bc)】/a*2【√(ca)】/b*2【√(ab)】/c。
=8abc/abc=8。
当且仅当a=b=c=1/3时取等号。
简介
正数是数学术语,比0大的数叫正数(positive number),0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写,负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。
在数轴线上,正数都在0的右侧,最早记载正数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小。
展开全部
这个题证法很多,给你两种:
证法一:
1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a
1/b-1=(c+a)/b≥2【√(ca)】/b
1/c-1=(a+b)/c≥2【√(ab)】/c
(1/a-1)(1/b-1)(1/c-1)≥2【√(bc)】/a*2【√(ca)】/b*2【√(ab)】/c
=8abc/abc=8
当且仅当a=b=c=1/3时取等号。
证法二:
因为a+b+c=1,
所以(1/a-1)(1/b-1)(1/c-1)
=[(a+b+c)/a-1][(a+b+c)/b-1][(a+b+c)/c-1]
=(1+b/a+c/a-1)(1+a/b+c/b-1)(1+a/c+b/c-1)
=(b/a+c/a)(a/b+c/b)(a/c+b/c)
≥(2bc/a^2)(2ac/b^2)(2ab/c^2)
=8
当且仅当a=b=c=1/3时取等号。
证法一:
1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a
1/b-1=(c+a)/b≥2【√(ca)】/b
1/c-1=(a+b)/c≥2【√(ab)】/c
(1/a-1)(1/b-1)(1/c-1)≥2【√(bc)】/a*2【√(ca)】/b*2【√(ab)】/c
=8abc/abc=8
当且仅当a=b=c=1/3时取等号。
证法二:
因为a+b+c=1,
所以(1/a-1)(1/b-1)(1/c-1)
=[(a+b+c)/a-1][(a+b+c)/b-1][(a+b+c)/c-1]
=(1+b/a+c/a-1)(1+a/b+c/b-1)(1+a/c+b/c-1)
=(b/a+c/a)(a/b+c/b)(a/c+b/c)
≥(2bc/a^2)(2ac/b^2)(2ab/c^2)
=8
当且仅当a=b=c=1/3时取等号。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
将1代换为a+b+c
即(1/a-1)(1/b-1)(1/c-1)
=((a+b+c)/a-1)((a+b+c)/b-1)((a+b+c)/c-1)
=(b+c)/a*(a+c)/b*(a+b)/c
=(a+b)*(b+c)*(a+c)/(abc)
均值定理a+b>=2*根号ab
a+c>=2*根号ac
b+c>=2*根号bc
三个不等式相乘(a+b)*(b+c)*(a+c)>=8(abc)
所以(a+b)*(b+c)*(a+c)/(abc)>=8
所以(1/a-1)(1/b-1)(1/c-1)>=8
即(1/a-1)(1/b-1)(1/c-1)
=((a+b+c)/a-1)((a+b+c)/b-1)((a+b+c)/c-1)
=(b+c)/a*(a+c)/b*(a+b)/c
=(a+b)*(b+c)*(a+c)/(abc)
均值定理a+b>=2*根号ab
a+c>=2*根号ac
b+c>=2*根号bc
三个不等式相乘(a+b)*(b+c)*(a+c)>=8(abc)
所以(a+b)*(b+c)*(a+c)/(abc)>=8
所以(1/a-1)(1/b-1)(1/c-1)>=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-05-02
展开全部
明明是负数,怎么可能大于等于8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |