f(x)=∫[0~x]tsin√(x^2-t^2)dt 求f(x)的导数
展开全部
设u=√(x^2-t^2),则t=√(x^2-u^2),积分上限限对应为[x,0]
f(x)
=∫[x~0]√(x^2-u^2)*sinud√(x^2-u^2)
=∫[x~0]√(x^2-u^2)*sinu[(1/2)*(-2u)/√(x^2-u^2)]du
=-∫[x~0]]usinudu
=∫[x~0]udcosu
=ucosu[x,0]-∫[x~0]cosudu
=ucosu[x,0]+sinu[x,0]
=-xcosx-sinx
所以:
f(x)‘=xsinx-2cosx.
f(x)
=∫[x~0]√(x^2-u^2)*sinud√(x^2-u^2)
=∫[x~0]√(x^2-u^2)*sinu[(1/2)*(-2u)/√(x^2-u^2)]du
=-∫[x~0]]usinudu
=∫[x~0]udcosu
=ucosu[x,0]-∫[x~0]cosudu
=ucosu[x,0]+sinu[x,0]
=-xcosx-sinx
所以:
f(x)‘=xsinx-2cosx.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询