已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2

已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(Ⅰ)当点D与点A不重合时(如图①),证明E... 已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(Ⅰ)当点D与点A不重合时(如图①),证明ED2=EB?EC;(Ⅱ)当点D与点A重合时(如图②),若BC=2,BE=6,求⊙O2的直径长. 展开
 我来答
怕怕浩浩408
推荐于2016-11-01 · TA获得超过1171个赞
知道答主
回答量:122
采纳率:0%
帮助的人:59.5万
展开全部
(Ⅰ)证明:连接AB,在EA的延长线上取点F.
∵AE是⊙O1的切线,切点为A,
∴∠FAC=∠ABC,.…(1分)
∵∠FAC=∠DAE,
∴∠ABC=∠DAE,
∵∠ABC是⊙O2内接四边形ABED的外角,
∴∠ABC=∠ADE,…(2分)
∴∠DAE=∠ADE.…(3分)
∴EA=ED,
∵EA2=EB?EC,
∴ED2=EB?EC.…(5分)
(Ⅱ)解:当点D与点A重合时,直线CA与⊙O2只有一个公共点,
∴直线CA与⊙O2相切.…(6分)
如图②所示,由弦切角定理知:∠PAC=∠ABC,∠MAE=∠ABE,
∵∠PAC=∠MAE,
∴∠ABC=∠ABE=90°
∴AC与AE分别为⊙O1和⊙O2的直径.…(8分)
∴由切割线定理知:EA2=BE?CE,而CB=2,BE=6,CE=8
∴EA2=6×8=48,AE=4
3

故⊙O2的直径为4
3
.…(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式