已知:如图,AD是△ABC外接圆⊙O的直径,AE是△ABC的边BC上的高,DF⊥BC,F为垂足.(1)求证:BF=EC;(

已知:如图,AD是△ABC外接圆⊙O的直径,AE是△ABC的边BC上的高,DF⊥BC,F为垂足.(1)求证:BF=EC;(2)若C点是弧AD的中点,且DF=3,AE=3,... 已知:如图,AD是△ABC外接圆⊙O的直径,AE是△ABC的边BC上的高,DF⊥BC,F为垂足.(1)求证:BF=EC;(2)若C点是弧AD的中点,且DF=3,AE=3,求BC的长. 展开
 我来答
百度网友7c640dcb123
2014-09-02 · 超过60用户采纳过TA的回答
知道答主
回答量:113
采纳率:25%
帮助的人:104万
展开全部
解:(1)证明:过0作OH⊥BC于H,
∵OH过O,
∴由垂径定理得:BH=CH,
∵AE⊥BC,DF⊥BC,OH⊥BC,
∴AE∥OH∥DF,
又∵OA=OD,
∴EH=FH,
∵BH=CH,
∴EH-BH=FH-CH,
即BE=CF,
∴BE+BC=CF+BC,
∴BF=CE.

(2)
∵C点是弧AD的中点,即弧AC=弧CD,
∴AC=CD,
∵AD是直径,
∴∠ACD=90°,
∴∠ACE+∠DCF=90°,
∵AE⊥EF,
∴∠AEC=90°,
∴∠EAC+∠ACE=90°,
∴∠EAC=∠DCF,
在△EAC和△FCD中
∠AEC=∠DFC=90°
∠EAC=∠DCF
AC=CD

∴△EAC≌△FCD,
∴AE=CF=3,CE=DF=3,
∴EC=CF,
∵OA=OC,
∴OC是梯形AEFD的中位线,
∴OC∥AE,
∵AE⊥EF,
∴OC⊥EF,
∵OC为半径,
∴OC是⊙O切线,
∴EF和⊙O只有一个交点,
即B C重合,
∴BC=0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式