如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF ∥ AC交CE的延长线于点F
如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF....
如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF ∥ AC交CE的延长线于点F,求证:AB垂直平分DF.
展开
2个回答
展开全部
证明:连接DF, ∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°, ∴∠BCE=∠CAE. ∵AC⊥BC,BF ∥ AC. ∴BF⊥BC. ∴∠ACD=∠CBF=90°, ∵AC=CB, ∴△ACD≌△CBF.∴CD=BF. ∵CD=BD=
∴△BFD为等腰直角三角形. ∵∠ACB=90°,CA=CB, ∴∠ABC=45°. ∵∠FBD=90°, ∴∠ABF=45°. ∴∠ABC=∠ABF,即BA是∠FBD的平分线. ∴BA是FD边上的高线,BA又是边FD的中线, 即AB垂直平分DF. |
展开全部
在Rt△ACD和Rt△AED中,
因为∠ACD=90°,∠CED=90°,
所以∠CAD=∠ECD
因为BF∥AC,∠ACD=∠CBF=90°
在Rt△ACD和Rt△CBF中,
AC=BC,
∠CAD=∠FCB,
所以Rt△ACD和Rt△CBF全等BF=CD
又因D是BC的中点,所以BF=BD,△DBF是等腰三角形
因为BF∥AC,
所以,∠CAB=∠ABF,
又因AB=BC
,所以,∠ACB=∠CBA=∠AB,FAB是,△DBF顶角的角平分线,
所以AB垂直平分DF
因为∠ACD=90°,∠CED=90°,
所以∠CAD=∠ECD
因为BF∥AC,∠ACD=∠CBF=90°
在Rt△ACD和Rt△CBF中,
AC=BC,
∠CAD=∠FCB,
所以Rt△ACD和Rt△CBF全等BF=CD
又因D是BC的中点,所以BF=BD,△DBF是等腰三角形
因为BF∥AC,
所以,∠CAB=∠ABF,
又因AB=BC
,所以,∠ACB=∠CBA=∠AB,FAB是,△DBF顶角的角平分线,
所以AB垂直平分DF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询