已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;(2)若对... 已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n). 展开
 我来答
魇梦GPY
推荐于2016-08-07 · TA获得超过101个赞
知道答主
回答量:141
采纳率:100%
帮助的人:60.3万
展开全部
(1)当n+3m2=0时,f(x)=x2+mx-3m2lnx.
f′(x)=2x+m-
3m2
x
=
2x2+mx-3m2
x
=
(2x+3m)(x-m)
x

令f′(x)=0,得x=-
3m
2
(舍),x=m.(3分)
①当m>1时,

∴当x=m时,fmin(x)=2m2-3m2lnm.
令2m2-3m2lnm=0,得m=e
2
3
.(5分)
②当0<m≤1时,f′(x)≥0在x∈[1,+∞)上恒成立,
f(x)在x∈[1,+∞)上为增函数,当x=1时,fmin(x)=1+m.
令m+1=0,得m=-1(舍).综上所述,所求m为m=e
2
3
.(7分)
(2)∵对于任意的实数a∈[1,2],b-a=1,
f(x)在区间(a,b)上总是减函数,则对于x∈(1,3),
f′(x)=2x+m+
n
x
=
2x2+mx+n
x
<0,
∴f′(x)≤0在区间[1,3]上恒成立.(9分)
设g(x)=2x2+mx+n,∵x>0,
∴g(x)≤0在区间[1,3]上恒成立.
由g(x)二次项系数为正,得
g(1)≤0
g(3)≤0

m+n+2≤0
3m+n+18≤0
亦即
m≤-n-2
m≤-
n
3
-6.
(12分)
∵(-n-2)-(-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式