x^3-y^3 xy=0求y=y(x)的渐近线方程
1个回答
展开全部
解:dy/dx=(x³+y³)/3xy²=(1/3)[(x/y)²+(y/x)]=(1/3)[1/(y/x)²+(y/x)] 令y/x=u,则y=ux,dy/dx=u+x(du/dx),代入上式得: u+x(du/dx)=(1/3)[(1/u²)+u] 故有x(du/dx)=1/(3u²)-(2/3)u=(1-2u³)/(3u²) 。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询