判断函数奇偶性
4个回答
2018-10-18 · 知道合伙人教育行家
关注
展开全部
定义域为R,f(-x)=(-x)cos(-x)=-xcosx=-f(x)
是奇函数
是奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
奇函数。
f(-x)=-xcos(-x)=-xcosx=-f(x).
f(-x)=-xcos(-x)=-xcosx=-f(x).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
奇偶性是函数的基本性质之一。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒推其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
追问
不,我是让你解那个函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询