求解复变函数的泰勒级数 50

 我来答
pin小琪

2021-12-12 · 超过73用户采纳过TA的回答
知道小有建树答主
回答量:518
采纳率:57%
帮助的人:21.8万
展开全部
没什么技巧,其实就是合并同类项而已
前一个级数z^n的系数为i^n/n!,
后一个级数z^n的系数为(-i)^n/n!,
∴相减后z^n的系数为(i^n-(-i)^n)/n!
=(1-(-1)^n)i^n/n!
由此可见当n为偶数时,上式=0
当n为奇数时,上式=2i^n/n!
∴相减后的级数没有偶次项
即只有奇次项,考虑到前面有个系数1/2i
所以每个奇次项z^(2k+1),k=0,1,2,3....的系数为
i^(2k)/(2k+1)!=(-1)^k/(2k+1)!
写成求和的形式,把指标k换成n就是红线部分的式子
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式