把一副学生用三角板(30°、60°、90°和45°、45°、90°)如图(1)放置在平面直角坐标系中,点A在y轴

把一副学生用三角板(30°、60°、90°和45°、45°、90°)如图(1)放置在平面直角坐标系中,点A在y轴正半轴上,直角边AC与y轴重合,斜边AD与y轴重合,直角边... 把一副学生用三角板(30°、60°、90°和45°、45°、90°)如图(1)放置在平面直角坐标系中,点A在y轴正半轴上,直角边AC与y轴重合,斜边AD与y轴重合,直角边AE交x轴于F,斜边AB交x轴于G,O是AC中点,AC=8.(1)把图1中的Rt△AED绕A点顺时针旋转α度(0≤α<90°)得图2,此时△AGH的面积是10,△AHF的面积是8,分别求F、H、B三点的坐标;(2)如图3,设∠AHF的平分线和∠AGH的平分线交于点M,∠EFH的平分线和∠FOC的平分线交于点N,当改变α的大小时,∠N+∠M的值是否会改变?若改变,请说明理由;若不改变,请求出其值. 展开
 我来答
st0250
推荐于2016-12-01 · TA获得超过182个赞
知道答主
回答量:144
采纳率:0%
帮助的人:138万
展开全部
(1)∵OG∥BC,AC=8,
∴∠B=∠AGO=45°,
∴OA=OG=4.
∵S△AFH=8,S△AGH=10,
∴GH=5,FH=4.
∴OH=1,OF=5,
∴F(-5,0),H(-1,0),B(8,-4).

(2)不变,∠N+∠M=97.5°.
理由如下
设∠HAC=α,∠GAO=∠AGO=45°,
∴∠FHA=∠HAG+∠AGH=90°+α.
∵HM平分∠AHF,
∴∠FHM=
1
2
∠FHA=45°+
1
2
α.
∵GM平分∠AGH,
∴∠HGM=
1
2
∠AGO=22.5°.
∵∠FHM=∠HMG+∠MGH,
∴45°+
1
2
α=∠M+22.5°,
∴∠M=22.5°+
1
2
α.
又FN平分∠EFO,
∴∠NFO=
1
2
∠EFO=
1
2
(∠FOA+∠FAO)
=
1
2
(90°+30°+α)=60°+
1
2
α,
∴∠N=180°-∠NFO-∠NOF
=180°-(60°+
1
2
α)-45°
=75°-
1
2
α.
∴∠N+∠M=(75°-
1
2
α)+(22.5°+
1
2
α)=97.5°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式