f(x+y,y/x)=x^2-y^2,求f(x,y)
展开全部
解法一:
令x+y=t,y/x=s,则
y=sx,x+y=x+sx=(s+1)x=t
x=t/(s+1)
y=sx=ts/s+1)
f(x+y,y/x)=f(t,s)
=[t/(s+1)]²-[ts/(s+1)]²
=t²/(s+1)² -t²s²/(s+1)²
=[t²/(s+1)²](1-s²)
=[t²/(s+1)²](1+s)(1-s)
=t²(1-s)/(1+s)
=(x+y)²(1- y/x)/(1+ y/x)
将x+y换成x,y/x换成y
f(x,y)=x²(1-y)/(1+y)
令x+y=t,y/x=s,则
y=sx,x+y=x+sx=(s+1)x=t
x=t/(s+1)
y=sx=ts/s+1)
f(x+y,y/x)=f(t,s)
=[t/(s+1)]²-[ts/(s+1)]²
=t²/(s+1)² -t²s²/(s+1)²
=[t²/(s+1)²](1-s²)
=[t²/(s+1)²](1+s)(1-s)
=t²(1-s)/(1+s)
=(x+y)²(1- y/x)/(1+ y/x)
将x+y换成x,y/x换成y
f(x,y)=x²(1-y)/(1+y)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询