阿基米德群牛问题的问题的解决

 我来答
Kyoya江NP7
2016-05-29 · TA获得超过164个赞
知道答主
回答量:185
采纳率:0%
帮助的人:133万
展开全部

“较简问题”已由Jul.Fr.武尔姆(Wurm)解决.“完全问题”在1880年为阿姆托尔(Amthor)所解决。
即使较简问题,牛的总数也已达到5916837175686头之多!
而完全问题导致2元2次方程: t^2-4729494u^2=1。
最小解牛的总数是7.766×10^206544,位数超过20万!当时阿基米德未必解得出来。
而即使没有最后两个条件,群牛问题的最小正数解也达50'389'082。故它的叙述自然与实际不符——西西里岛再大也装不下这么多牛的。但历史上对这问题的研究丰富了初等数论的内容。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式