高数limx→∞(1-k/x)^x=e^-5?

 我来答
只有不懂我的你
2019-12-23
知道答主
回答量:96
采纳率:33%
帮助的人:17.5万
展开全部

是求K值吧,用通用公式

如下

即 -K=-5,则K=5

追问
是这样!感谢!这公式是课本上的?没看到啊!和哪章知识接近呢?
姑苏凝丝
2020-01-06
知道答主
回答量:2
采纳率:0%
帮助的人:1303
展开全部
案这样写:
lim (1-(k/x))^(lx)=e^(k·l)
x→∞

所以:e^(2·k)=e^(-10)
即 2k=(-10)
k=-5.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
婉顺还轻盈灬宝贝457
2019-12-23 · TA获得超过6235个赞
知道大有可为答主
回答量:1.3万
采纳率:49%
帮助的人:586万
展开全部
这是个欧拉积分,没办法求出原函数。方法可以有下面两种
1. 利用加玛函数r(s)=∫x^(s-1) *[e^(-x)]dx,由贝塔函数可知r(0.5)=√π,
在∫e^(-x²)dx中令x²=t,则∫e^(-x²)dx=0.5r(0.5)=0.5*√π (积分区间均为0到正无穷大)
从而∫e^(-x²)dx=√π,积分区间是(-∞,+∞)
2. 在第一象限中画出一个半径为R和√2R的四分之一圆,再画一个边长为R的正方形
令半径为R的四分之一圆区域为D1,半径为√2R的四分之一圆区域为D2,正方形区域为D,因为
∫∫e^(-x^2*y^2)dxdy≤∫∫e^(-x^2*y^2)dxdy≤∫∫e^(-x^2*y^2)dxdy ,从左到右的积分区域分别为D1,D,D2
所以求解上面每一个二重积分,可以知道
(π/4)(1-e^(-R^2))≤[∫e^(-x²)dx]²≤(π/4)(1-e^(-2R^2)) 中间的积分区域是0到R
然后令上式的R趋于正无穷大时,两边极限都为π/4
所以中间的极限为π/4
开根号以后就可以知道∫e^(-x²)dx=0.5*√π ,(积分区间均为0到正无穷大)
从而∫e^(-x²)dx=√π,积分区间是(-∞,+∞)

综上∫e^(-x²)dx=√π,积分区间是(-∞,+∞)

这个积分很重要,在概率中正态分布的概率密度就跟它有关系,所以你最好要好好理解一下,希望对你有所帮助
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式