已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB= ,∠CAD=30°. (1)求证:AD是⊙
已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长....
已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB= ,∠CAD=30°.
(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长. 展开
(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长. 展开
4个回答
2019-01-17
展开全部
(1)AD是⊙O的切线,
理由如下:连接OA,
∵∠B=30°,
∴∠O=60°,
∵OA=OC,
∴∠OAC=60°,
∵∠CAD=30°,
∴∠OAD=90°,
又∴点A在⊙O?上,
∴AD是⊙O的切线.
(2)∵∠OAC=∠O=60°,
∴∠OCA=60°,
∴△AOC是等边三角形,
∵OD⊥AB,
∴OD垂直平分AB,
∴AC=BC=5,
∴OA=5,
即⊙O的半径为5.
理由如下:连接OA,
∵∠B=30°,
∴∠O=60°,
∵OA=OC,
∴∠OAC=60°,
∵∠CAD=30°,
∴∠OAD=90°,
又∴点A在⊙O?上,
∴AD是⊙O的切线.
(2)∵∠OAC=∠O=60°,
∴∠OCA=60°,
∴△AOC是等边三角形,
∵OD⊥AB,
∴OD垂直平分AB,
∴AC=BC=5,
∴OA=5,
即⊙O的半径为5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询