
数列{an}的前n项和Sn=n2,数列{bn}满足b1=2,bn+1=bn+3?2an.(1)求数列{an},{bn}的通项公式;(2)
数列{an}的前n项和Sn=n2,数列{bn}满足b1=2,bn+1=bn+3?2an.(1)求数列{an},{bn}的通项公式;(2)若cn=2n?log2bn+1(n...
数列{an}的前n项和Sn=n2,数列{bn}满足b1=2,bn+1=bn+3?2an.(1)求数列{an},{bn}的通项公式;(2)若cn=2n?log2bn+1(n∈N*),Tn为{cn}的前n项和,求Tn.
展开
1个回答
展开全部
(Ⅰ)由已知Sn=n2,当n≥2时,
an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=1适合上式,
∴an=2n-1.
由bn+1=bn+3?2n,得bn+1?bn=3?2n,
∴bn+1=3?(22n?1+22n?3+…+2)+2
=3?
+2
=22n+1
=22(n+1)-1,
∵b1=2满足上式,∴bn=22n?1.
(Ⅱ)∵cn=2n?log222n+1=(2n+1)?2n,
∴Tn=c1+c2+…+cn=3?2+5?22+…+(2n+1)?2n,…(8分)
2Tn=3?22+5?23+…+(2n?1)?2n+(2n+1)?2n+1,
两式相减得:?Tn=3?2+2?(22+23+…+2n)?(2n+1)?2n+1
=2+22+23+…+2n+1-(2n+1)?2n+1
=2(2n+1-1)-(2n+1)?2n+1
=-(2n-1)?2n+1-2,
∴Tn=(2n?1)?2n+1+2.…(13分)
an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=1适合上式,
∴an=2n-1.
由bn+1=bn+3?2n,得bn+1?bn=3?2n,
∴bn+1=3?(22n?1+22n?3+…+2)+2
=3?
2(4n?1) |
4?1 |
=22n+1
=22(n+1)-1,
∵b1=2满足上式,∴bn=22n?1.
(Ⅱ)∵cn=2n?log222n+1=(2n+1)?2n,
∴Tn=c1+c2+…+cn=3?2+5?22+…+(2n+1)?2n,…(8分)
2Tn=3?22+5?23+…+(2n?1)?2n+(2n+1)?2n+1,
两式相减得:?Tn=3?2+2?(22+23+…+2n)?(2n+1)?2n+1
=2+22+23+…+2n+1-(2n+1)?2n+1
=2(2n+1-1)-(2n+1)?2n+1
=-(2n-1)?2n+1-2,
∴Tn=(2n?1)?2n+1+2.…(13分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询