如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2
如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证...
如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.
展开
1个回答
展开全部
解答:(1)△BEC是直角三角形,
理由是:∵矩形ABCD,
∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
由勾股定理得:CE=
=
=
,
同理BE=2
,
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2,
∴∠BEC=90°,
∴△BEC是直角三角形.
(2)解:四边形EFPH为矩形,
证明:∵矩形ABCD,
∴AD=BC,AD∥BC,
∵DE=BP,
∴四边形DEBP是平行四边形,
∴BE∥DP,
∵AD=BC,AD∥BC,DE=BP,
∴AE=CP,
∴四边形AECP是平行四边形,
∴AP∥CE,
∴四边形EFPH是平行四边形,
∵∠BEC=90°,
∴平行四边形EFPH是矩形.
(3)解:在RT△PCD中FC⊥PD,
由三角形的面积公式得:PD?CF=PC?CD,
∴CF=
=
,
∴EF=CE-CF=
-
=
,
∵PF=
=
,
∴S矩形EFPH=EF?PF=
,
答:四边形EFPH的面积是
.
理由是:∵矩形ABCD,
∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
由勾股定理得:CE=
CD2+DE2 |
22+12 |
5 |
同理BE=2
5 |
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2,
∴∠BEC=90°,
∴△BEC是直角三角形.
(2)解:四边形EFPH为矩形,
证明:∵矩形ABCD,
∴AD=BC,AD∥BC,
∵DE=BP,
∴四边形DEBP是平行四边形,
∴BE∥DP,
∵AD=BC,AD∥BC,DE=BP,
∴AE=CP,
∴四边形AECP是平行四边形,
∴AP∥CE,
∴四边形EFPH是平行四边形,
∵∠BEC=90°,
∴平行四边形EFPH是矩形.
(3)解:在RT△PCD中FC⊥PD,
由三角形的面积公式得:PD?CF=PC?CD,
∴CF=
4×2 | ||
2
|
4 |
5 |
5 |
∴EF=CE-CF=
5 |
4 |
5 |
5 |
1 |
5 |
5 |
∵PF=
PC2?CF2 |
8 |
5 |
5 |
∴S矩形EFPH=EF?PF=
8 |
5 |
答:四边形EFPH的面积是
8 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询