已知等差数列{an}的前n项和为Sn,且a3=5,S15=150.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan
已知等差数列{an}的前n项和为Sn,且a3=5,S15=150.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前n项和Tn....
已知等差数列{an}的前n项和为Sn,且a3=5,S15=150.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前n项和Tn.
展开
展开全部
(1)∵等差数列{an}的前n项和为Sn,且a3=5,S15=150,
∴
,
解得a1=3,d=1,
∴an=3+(n-1)=n+2.
(2)bn=2an+(-1)nan=2n+2+(-1)n?(n+2),
当n为偶数时,
Tn=23-3+24+4+…+2n+2+(-1)n?(n+2)
=(23+24+…+2n+2)+(-3+4)+…+(-n-1+n+2)
=
+
=2n+3+
?8.
当n为奇数时,
Tn=23-3+24+4+…+2n+2+(-1)n?(n+2)
=(23+24+…+2n+2)+(-3+4)+…+(-n+n+1)-(n+2)
=
+
?n?2
=2n+3?
?
.
∴Tn=
.
∴
|
解得a1=3,d=1,
∴an=3+(n-1)=n+2.
(2)bn=2an+(-1)nan=2n+2+(-1)n?(n+2),
当n为偶数时,
Tn=23-3+24+4+…+2n+2+(-1)n?(n+2)
=(23+24+…+2n+2)+(-3+4)+…+(-n-1+n+2)
=
8(1?2n) |
1?2 |
n |
2 |
=2n+3+
n |
2 |
当n为奇数时,
Tn=23-3+24+4+…+2n+2+(-1)n?(n+2)
=(23+24+…+2n+2)+(-3+4)+…+(-n+n+1)-(n+2)
=
8(1?2n) |
1?2 |
n?1 |
2 |
=2n+3?
n |
2 |
21 |
2 |
∴Tn=
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询