把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.(1)图1是

把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.(1)图1是一种放置位置及由它抽象出的几何图形,B、C、D在同一条直线上,连接EC... 把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.(1)图1是一种放置位置及由它抽象出的几何图形,B、C、D在同一条直线上,连接EC.请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;(2)图2也是一种放置位置及由它抽象出的几何图形,A、C、D在同一条直线上,连接BD、连接EC并延长与BD交于点F.请找出线段BD和EC的位置关系,并说明理由;(3)请你:①画出一个符合放置规则且不同于图1和图2所放位置的几何图形;②写出你所画几何图形中线段BD和EC的位置和数量关系;③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗? 展开
 我来答
鶘鎖1939惪
2014-12-21 · TA获得超过108个赞
知道答主
回答量:107
采纳率:0%
帮助的人:126万
展开全部
(1)△ABD≌△ACE.(1分)
∵△ABC是直角三角形,
∴AB=AC,∠BAC=90°.(1分)
同理 AD=AE,∠EAD=90°.(1分)
∴∠BAC=∠EAD.
∴∠BAC+∠CAD=∠EAD+∠CAD.
即∠BAD=∠CAE.(1分)
在△ABD和△ACE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△ABD≌△ACE.

(2)在△ABD和△ACE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△ABD≌△ACE.
∴∠ADB=∠AEC.(全等三角形对应角相等)(1分)
∵∠ACE=∠DCF,(对顶角相等)
∠ADB+∠DCF+∠EFD=180°,(三角形内角和180°)
∠AEC+∠ACE+∠EAC=180°,(三角形内角和180°)(1分)
∴∠EAC=∠EFD.(1分)
∵∠BAC=90°,
∴∠EAC=90°.
即∠EFD=90°.
∴BD⊥EC.(垂直定义)(1分)

(3)①如图:(1分)
②BD=EC,BD⊥EC.(2分)
③存在.(1分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式