求 【根号(4-x^2)/x】dx的不定积分
令x=2sect,
则dx=2sect·tantdt
原式=∫(2tant)/(2sect)·2sect·tantdt
=∫2tan²tdt
=2∫(sec²t-1)dt
=2(tant-t)+C
=2√(x²-4)-2arccos(2/x)+C
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
2021-11-03 · 知道合伙人教育行家
dx=2cosudu,
原式=∫2(cos² u)/sinu du
= ∫[2(1-sin² u)/sinu du
= 2∫(1/sinu - sinu)du
= 2∫(cscu-sinu)du
= -2ln|cscu+cotu|-2cosu+C
= 2ln|x|-2ln[√(4-x²)+2]+√(4-x²)+C