(当n趋向∞)nsin(π/n)的极限怎么做?
1个回答
展开全部
(当n趋向∞)nsin(π/n)的极限解法:
当n趋向∞,
limnsin(π/n)
=lim
n*[sin(π/n)]/(π/n)*(π/n)
=lim
n*(π/n)*[sin(π/n)]/(π/n)
=lim
[n*(π/n)]*[sin(π/n)/(π/n)]
=lim
π*[sin(π/n)/(π/n)]
=π*lim[sin(π/n)/(π/n)]
=π
在重要极限中lim(x→0)sinx/x=1,取x=(π/n),即有lim[sin(π/n)/(π/n)]=1
或者:因为当n趋向∞时,π/n趋向0,sin(π/n)和π/n是同阶无穷小,所以当n趋向∞时,lim[sin(π/n)/(π/n)]=1
当n趋向∞,
limnsin(π/n)
=lim
n*[sin(π/n)]/(π/n)*(π/n)
=lim
n*(π/n)*[sin(π/n)]/(π/n)
=lim
[n*(π/n)]*[sin(π/n)/(π/n)]
=lim
π*[sin(π/n)/(π/n)]
=π*lim[sin(π/n)/(π/n)]
=π
在重要极限中lim(x→0)sinx/x=1,取x=(π/n),即有lim[sin(π/n)/(π/n)]=1
或者:因为当n趋向∞时,π/n趋向0,sin(π/n)和π/n是同阶无穷小,所以当n趋向∞时,lim[sin(π/n)/(π/n)]=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询