在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)
2个回答
展开全部
a(n)
=
a
+
(n-1)d.
s(n)
=
na
+
n(n-1)d/2.
p
=
s(m)
=
ma
+
m(m-1)d/2.
p^2
=
mpa
+
mp(m-1)d/2.
m
=
s(p)
=
pa
+
p(p-1)d/2.
m^2
=
mpa
+
mp(p-1)d/2.
p^2
-
m^2
=
[mpa
+
mp(m-1)d/2]
-
[mpa
+
mp(p-1)d/2]
=
mpd/2(m-p)
=
(p-m)(p+m).
m不等于p时,
mpd/2
=
-(p+m).
d/2
=
-(p+m)/(mp).
p
=
ma
+
m(m-1)d/2
=
ma
-
m(m-1)(p+m)/(mp)
=
ma
-
(m-1)(p+m)/p.
a
=
[p
+
(m-1)(p+m)/p]/m.
s(m+p)=
(m+p)a
+
(m+p)(m+p-1)d/2
=
(m+p)[p+(m-1)(p+m)/p]/m
+
(m+p)(m+p-1)[-(p+m)/(mp)]
=
[(m+p)/(mp)][p^2
+
(m-1)(p+m)
-
(m+p-1)(m+p)]
=
[(m+p)/(mp)][p^2
+
(p+m)(-p)]
=
[(m+p)/(mp)](-mp)
=
-(m+p)
=
a
+
(n-1)d.
s(n)
=
na
+
n(n-1)d/2.
p
=
s(m)
=
ma
+
m(m-1)d/2.
p^2
=
mpa
+
mp(m-1)d/2.
m
=
s(p)
=
pa
+
p(p-1)d/2.
m^2
=
mpa
+
mp(p-1)d/2.
p^2
-
m^2
=
[mpa
+
mp(m-1)d/2]
-
[mpa
+
mp(p-1)d/2]
=
mpd/2(m-p)
=
(p-m)(p+m).
m不等于p时,
mpd/2
=
-(p+m).
d/2
=
-(p+m)/(mp).
p
=
ma
+
m(m-1)d/2
=
ma
-
m(m-1)(p+m)/(mp)
=
ma
-
(m-1)(p+m)/p.
a
=
[p
+
(m-1)(p+m)/p]/m.
s(m+p)=
(m+p)a
+
(m+p)(m+p-1)d/2
=
(m+p)[p+(m-1)(p+m)/p]/m
+
(m+p)(m+p-1)[-(p+m)/(mp)]
=
[(m+p)/(mp)][p^2
+
(m-1)(p+m)
-
(m+p-1)(m+p)]
=
[(m+p)/(mp)][p^2
+
(p+m)(-p)]
=
[(m+p)/(mp)](-mp)
=
-(m+p)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询