去心邻域什么意思?
在拓扑学中,设A是拓扑空间(X,τ)的一个子集,点x∈A。如果存在集合U,满足 U 是开集,即 U∈τ;点x∈U;U 是A的子集,则称点 x 是 A 的一个内点,并称 A 是点 x 的一个邻域。
注意:
通常δ是较小的实数,所以,a的δ邻域表示的是a的邻近的点,有时候,我们只考虑点a邻近的点,不考虑点a,即考虑点集{x|a-δ<x<a或a<x<a+δ},我们称这个点集为点a的去心的邻域,记为Ů(a,δ),即Ů(a,δ)={x|a-δ<x<a或a<x<a+δ},以a为中心的任何开区间称为点a的邻域,记作U(a)。
设δ是任一正数,则开区间(a-δ,a+δ)就是点a的一个邻域,这个邻域称为点a的δ邻域。
记作U(a,δ),即U(a,δ)={x|a-δ<x<a+δ}。
去心邻域即在a的邻域中去掉a的数的集合,应用于高等数学。在拓扑学中,设A是拓扑空间(X,τ)的一个子集,点x∈A。如果存在集合U,满足 U 是开集,即 U∈τ;点x∈U;U 是A的子集,则称点 x 是 A 的一个内点,并称 A 是点 x 的一个邻域。
通常δ是较小的实数,所以,a的δ邻域表示的是a的邻近的点 ,如下图所示。以a为中心的任何开区间都称为点a的邻域,记作U(a)。设δ是任一正数,则开区间(a-δ,a+δ)就是点a的一个邻域,这个邻域称为点a的δ邻域。