如何证明幂等矩阵可相似对角化?

 我来答
帐号已注销
2021-12-08 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

证明幂等矩阵可相似对角化:n级矩阵A可对角化<=>A的属于不同特征值的特征子空间维数之和为n。

先求特征值,如果没有相重的特征值,一定可对角化;设A₁,A₂都是幂等矩阵,则(A₁+A₂)为幂等矩阵的充分必要条件为:A₁·A₂=A₂·A₁=0,且有:R(A₁+A₂)=R(A₁)⊕R(A₂);N(A₁+A₂)=N(A₁)∩N(A₂)。

性质

幂等矩阵的主要性质:

1、幂等矩阵的特征值只可能是0,1。

2、幂等矩阵可对角化

3、幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A)。

4、可逆的幂等矩阵为E。

5、方阵零矩阵和单位矩阵都是幂等矩阵。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式