1*1+2*2+3*3+4*4+......+n*n怎么算

晴晴知识加油站
高能答主

2019-07-27 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661337

向TA提问 私信TA
展开全部

结果为:n(n+1)(2n+1)/6

解题过程如下:

扩展资料

性质:

若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”。等比数列前n项之和Sn=a1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)

在等比数列中,首项a1与公比q都不为零。上述公式中A^n表示A的n次方。定义{cn},cn=an·bn,其中{an}为等差数列,{bn}为等比数列。

那么这个数列就叫做差比数列.由差比数列的定义可知,等差数列即当bn公比为1时差比数列的特殊形式,等比数列即当an公差为0时差比数列的特殊形式.差比数列的性质,就是由成倍递增的一组数所组成的数列.求和公式,可用错位相减法推出 。

累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列。

华瑞RAE一级代理商
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工... 点击进入详情页
本回答由华瑞RAE一级代理商提供
怎么又笑了
2010-06-11 · TA获得超过9117个赞
知道小有建树答主
回答量:813
采纳率:0%
帮助的人:895万
展开全部
解:利用恒等式(n+1)^3=n^3+3n^2+3n+1,可以得到:
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
..............................
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
370116
高赞答主

推荐于2018-04-04 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
(n+1)^3-n^3=3n^2+3n+1
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
……
2^3-1^3=3*1^2+3*1+1
全都加起来,左边中间可以抵消掉
(n+1)^3-1=3*[n^2+(n-1)^2+(n-2)^2+……+2^2+1^2]+3*[n+(n-1)+……+3+2+1]+n*1
而(n+1)^3-1=(n+1-1)[(n+1)^2+(n+1)+1]
=n(n^2+3n+3)
n+(n-1)+……+3+2+1=n(n+1)/2
所以n^2+(n-1)^2+(n-2)^2+……+2^2+1^2={[(n+1)^3-1]-3*[n+(n-1)+……+3+2+1]-n*1}/3
=[n(n^2+3n+3)-3n(n+1)/2-n]/3
=[n(n^2+3n+3-3n/2-3/2-1)]/3
=n(2n^2+3n+1)/6
=n(n+1)(2n+1)/6
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
米米锤锤数码生活aa
2010-06-11 · TA获得超过1.4万个赞
知道大有可为答主
回答量:2770
采纳率:0%
帮助的人:1018万
展开全部
=n(n+1)(2n+1)/6
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式