如图,若△ABC和△ADE为等边三角形,M,N分别在BE,CD上,且BM:ME=CD:ND=k,探索△AMN的形状并说明
如图,若△ABC和△ADE为等边三角形,M,N分别在BE,CD上,且BM:ME=CD:ND=k,探索△AMN的形状并说明...
如图,若△ABC和△ADE为等边三角形,M,N分别在BE,CD上,且BM:ME=CD:ND=k,探索△AMN的形状并说明
展开
3个回答
展开全部
证明:(1)
∵△ABC和△ADE均为等边三角形(已知)
∴AB=AC=BC,AD=AE, ∠ABC=∠BCA=∠BAC=∠DAE=60°∠BAC=∠DAE=60°(等边三角形的三条边相等,内角都为60°)
又∵∠BAD=∠BAC+∠CAD, ∠CAE=∠CAD+∠DAE(图知)
∴∠BAD=∠CAE(等量代换)
∴△ABC≌△ADE(边角边定理)
∴BD=CE, ∠DBA=∠ECA (全等三角形的对应边对应角相等)
∵B、C、D在同一条直线上(已知)
∴BD=BC+CD(图知)
∴CE=AC+CD(等量代换)
(2)∵∠ABC=∠BCA =∠BAC=60°,∠DBA=∠ECA(已证)
又∵B、C、D在同一条直线上(已知)
∴∠DBA即∠ABC =60°,∠BCA+∠ECA+∠ECD=180°
∴∠ECA =60°(等量代换)
∴∠ECD =60°(等量代换)
或者:
解:
(答案是,等边三角形,主要考察的是三角形全等)
△ABC和△ADE为等边三角形
得:AB=AC,AE=AD,<BAC=<EAD=60
又得:<CAD=<BAE
所以,三角形ADC与三角形AEB
得,BE=CD,<ABM=<ACN
由已知,BM/ME=CN/ND
得:BM=CN,由上知,,<ABM=<ACN,AB=AC
得,三角形ABM与三角形ACN全等
所以,AM=AN,<BAM=CAN,知<BAC=60
得,<MAN=60
所以,三角形AMN是等边三角形
∵△ABC和△ADE均为等边三角形(已知)
∴AB=AC=BC,AD=AE, ∠ABC=∠BCA=∠BAC=∠DAE=60°∠BAC=∠DAE=60°(等边三角形的三条边相等,内角都为60°)
又∵∠BAD=∠BAC+∠CAD, ∠CAE=∠CAD+∠DAE(图知)
∴∠BAD=∠CAE(等量代换)
∴△ABC≌△ADE(边角边定理)
∴BD=CE, ∠DBA=∠ECA (全等三角形的对应边对应角相等)
∵B、C、D在同一条直线上(已知)
∴BD=BC+CD(图知)
∴CE=AC+CD(等量代换)
(2)∵∠ABC=∠BCA =∠BAC=60°,∠DBA=∠ECA(已证)
又∵B、C、D在同一条直线上(已知)
∴∠DBA即∠ABC =60°,∠BCA+∠ECA+∠ECD=180°
∴∠ECA =60°(等量代换)
∴∠ECD =60°(等量代换)
或者:
解:
(答案是,等边三角形,主要考察的是三角形全等)
△ABC和△ADE为等边三角形
得:AB=AC,AE=AD,<BAC=<EAD=60
又得:<CAD=<BAE
所以,三角形ADC与三角形AEB
得,BE=CD,<ABM=<ACN
由已知,BM/ME=CN/ND
得:BM=CN,由上知,,<ABM=<ACN,AB=AC
得,三角形ABM与三角形ACN全等
所以,AM=AN,<BAM=CAN,知<BAC=60
得,<MAN=60
所以,三角形AMN是等边三角形
展开全部
解:
(答案是,等边三角形,主要考察的是三角形全等)
△ABC和△ADE为等边三角形
得:AB=AC,AE=AD,<BAC=<EAD=60
又得:<CAD=<BAE
所以,三角形ADC与三角形AEB
得,BE=CD,<ABM=<ACN
由已知,BM/ME=CN/ND
得:BM=CN,由上知,,<ABM=<ACN,AB=AC
得,三角形ABM与三角形ACN全等
所以,AM=AN,<BAM=CAN,知<BAC=60
得,<MAN=60
所以,三角形AMN是等边三角形
(答案是,等边三角形,主要考察的是三角形全等)
△ABC和△ADE为等边三角形
得:AB=AC,AE=AD,<BAC=<EAD=60
又得:<CAD=<BAE
所以,三角形ADC与三角形AEB
得,BE=CD,<ABM=<ACN
由已知,BM/ME=CN/ND
得:BM=CN,由上知,,<ABM=<ACN,AB=AC
得,三角形ABM与三角形ACN全等
所以,AM=AN,<BAM=CAN,知<BAC=60
得,<MAN=60
所以,三角形AMN是等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵△ABC和△ADE均为等边三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC,∠DAC=∠EAD-∠EAC,
∴∠BAE=∠DAC,
∴△ABE≌△ACD,∴CD=BE,∠ABE=∠ACD,
∵M、N分别是BE、CD的中点,即BM=12BE,CN=12CD,
∴BM=CN.又AB=AC,
∴△ABM≌△ACN,
∴AM=AN,∠MAB=∠NAC,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=60°,
∴△AMN是等边三角形.
(2)解:作EF⊥AB于点F,在Rt△AEF中,
∵∠EAB=30°,AE=AD=23,
∴EF=3,
∵M是BE中点,作MH⊥AB于点H,
∴MH∥EF,MH=12EF=32,
取AB中点P,连接MP,则MP∥AE,MP=12AE,
∴∠MPH=30°,MP=3,
∴在Rt△MPH中,PH=32,
∴AH=AP+PH=152,
在Rt△AMH中,AM=AH2+MH2=57.
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC,∠DAC=∠EAD-∠EAC,
∴∠BAE=∠DAC,
∴△ABE≌△ACD,∴CD=BE,∠ABE=∠ACD,
∵M、N分别是BE、CD的中点,即BM=12BE,CN=12CD,
∴BM=CN.又AB=AC,
∴△ABM≌△ACN,
∴AM=AN,∠MAB=∠NAC,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=60°,
∴△AMN是等边三角形.
(2)解:作EF⊥AB于点F,在Rt△AEF中,
∵∠EAB=30°,AE=AD=23,
∴EF=3,
∵M是BE中点,作MH⊥AB于点H,
∴MH∥EF,MH=12EF=32,
取AB中点P,连接MP,则MP∥AE,MP=12AE,
∴∠MPH=30°,MP=3,
∴在Rt△MPH中,PH=32,
∴AH=AP+PH=152,
在Rt△AMH中,AM=AH2+MH2=57.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询