求不定积分xarcsinxdx 分布积分法不会``求解详细过程 5
解:∫xarcsinxdx
=1/2*∫arcsinxdx^2
=1/2*x^2*arcsinx-1/2∫x^2darcsinx
=1/2*x^2*arcsinx-1/2∫x^2/√(1-x^2)dx
令x=sint,那么,
∫x^2/√(1-x^2)dx
=∫(sint)^2/costdsint
=∫(sint)^2dt
=∫(1-cos2t)/2dt
=1/2t-1/4sin2t+C=1/2t-1/2sint*cost+C
又x=sint,则t=arcsinx,cost=√(1-x^2),那么
∫x^2/√(1-x^2)dx=1/2t-1/2sint*cost+C=1/2arcsinx-1/2*x*√(1-x^2)+C
那么∫xarcsinxdx=1/2*x^2*arcsinx-1/2∫x^2/√(1-x^2)dx
=1/2*x^2*arcsinx-1/4arcsinx+1/4*x*√(1-x^2)+C
扩展资料:
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
参考资料来源:百度百科-分部积分法
(arcsinx)'=1/√(1-x²)
sin(2arcsinx)=2x√(1-x²)
原式=1/2∫arcsinxdx²
=1/2x²*arcsinx-1/2∫x²darcsinx
=1/2x²*arcsinx-1/2∫x²/√(1-x²)dx
=1/2x²*arcsinx+1/2∫-x²/√(1-x²)dx
=1/2x²*arcsinx+1/2∫(1-x²-1)/√(1-x²)dx
=1/2x²*arcsinx+1/2∫[(1-x²)/√(1-x²)-1/√(1-x²)]dx
=1/2x²*arcsinx+1/2∫[√(1-x²)-1/√(1-x²)]dx
=1/2x²*arcsinx+1/2∫√(1-x²)dx-arcsinx
扩展资料:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
参考资料来源:百度百科-不定积分
=1/2x²*arcsinx-1/2∫x²darcsinx
=1/2x²*arcsinx-1/2∫x²/√(1-x²)dx
=1/2x²*arcsinx+1/2∫-x²/√(1-x²)dx
=1/2x²*arcsinx+1/2∫(1-x²-1)/√(1-x²)dx
=1/2x²*arcsinx+1/2∫[(1-x²)/√(1-x²)-1/√(1-x²)]dx
=1/2x²*arcsinx+1/2∫[√(1-x²)-1/√(1-x²)]dx
=1/2x²*arcsinx+1/2∫√(1-x²)dx-arcsinx
单独求∫√(1-x²)dx
令x=sina
√(1-x²)=cosa
sin2a=2sinacosa=2x√(1-x²)
dx=cosada
∫√(1-x²)dx
=∫cosa*cosada
=∫(1+cos2a)/2 da
=1/2∫da+1/4∫cos2ad2a
=a/2+sin2a/4
=arcsinx/2+2x√(1-x²)/4
=arcsinx/2+x√(1-x²)/2
所以原式=1/2x²*arcsinx+(arcsinx)/4+x√(1-x²)/4-arcsinx+C
∫xarcsinxdx=0.5∫arcsinxd(x^2)=0.5arcsinx*x^2-0.5∫x^2darcsinx=0.5arcsinx*x^2-0.5∫x^2*(1-x^2)^0.5dx=0.5arcsinx*x^2-0.5∫x^2*(1-x^2)^0.5dx=0.5arcsinx*x^2-0.5∫-(1-x^2)/[(1-x^2)^0.5]-1/[(1-x^2)^0.5]dx=0.5arcsinx*x^2+0.5∫(1-x^2)/[(1-x^2)^0.5]+1/[(1-x^2)^0.5]dx=0.5arcsinx*x^2+0.5arcsinx+0.5∫(1-x^2)/[(1-x^2)^0.5dx=0.5arcsinx*x^2+0.5arcsinx+∫[(1-x^2)^0.5]^2d[(1-x^2)^0.5]=0.5arcsinx*x^2-0.5arcsinx+[(1-x^2)^1.5
]/3
1.设t=arcsinx,则:x=sint.
∫ x arcsinx dx = ∫ sint t d(sint) =∫ t sint cost dt = 1/2 ∫ t sin2t dt
=-1/4 ∫ t d(cos2t) = -1/4(t cos2t - ∫ cos2t dt)
=-1/4 t cos2t + 1/4 ∫ cos2t dt=-1/4 t cos2t + 1/8 sin2t
=-1/4 arcsinx cos(2 arcsinx) + 1/8 sin(2 arcsinx)
给你别的方法。。。
我不会做啊。。。