2个回答
2013-12-25
展开全部
你需要牢记公式才能够灵活运用。我们也是在初三初次学习三角函数,高一正式接触。高中的三角函数不是很难,只要用心学习,就会觉得很轻松的。
sinx= 对边/斜边
cosx= 临边/斜边
tanx= 对边/临边
secx= 1/cosx=斜边/临边
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
正割函数 sec (A) =h/b
余割函数 csc (A) =h/a
注:a—所研究角的对边
b—所研究的邻边
h—所研究角的斜边
三角函数常用公式:
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·商的关系:
tanα=sinα/cosα cotα=cosα/sinα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函数恒等变形公式:
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
参考资料:http://baike.baidu.com/view/91555.htm
sinx= 对边/斜边
cosx= 临边/斜边
tanx= 对边/临边
secx= 1/cosx=斜边/临边
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
正割函数 sec (A) =h/b
余割函数 csc (A) =h/a
注:a—所研究角的对边
b—所研究的邻边
h—所研究角的斜边
三角函数常用公式:
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·商的关系:
tanα=sinα/cosα cotα=cosα/sinα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函数恒等变形公式:
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
参考资料:http://baike.baidu.com/view/91555.htm
2013-12-25
展开全部
三角函数问题解法六种
三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:
一. 平方法
观察问题的条件和所求结论,是同角三角函数正余弦代数和形式或正余弦积的形式,可考虑将代数和取平方.这样能有机地将和差与乘积结合起来,从而顺利求解.
二. 降幂法
涉及高次三角函数化简问题,常通过平方关系,倍角关系降幂得到解答
三. 凑角法
还有一些求值问题,通过观察角之间的关系,恰当构造角使之与特殊角和其它角联系起来,能找出解答途径.
四. 换元法
解三角函数中的复合函数问题时,抓住特点巧妙换元可将复杂问题简单化
五. 讨论法
当涉及正负取舍或含参等的三角函数问题,往往要讨论作取舍.
六. 图象法
在解决三角函数问题时,有时要借助图象才能更好地解决相应问题.
三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:
一. 平方法
观察问题的条件和所求结论,是同角三角函数正余弦代数和形式或正余弦积的形式,可考虑将代数和取平方.这样能有机地将和差与乘积结合起来,从而顺利求解.
二. 降幂法
涉及高次三角函数化简问题,常通过平方关系,倍角关系降幂得到解答
三. 凑角法
还有一些求值问题,通过观察角之间的关系,恰当构造角使之与特殊角和其它角联系起来,能找出解答途径.
四. 换元法
解三角函数中的复合函数问题时,抓住特点巧妙换元可将复杂问题简单化
五. 讨论法
当涉及正负取舍或含参等的三角函数问题,往往要讨论作取舍.
六. 图象法
在解决三角函数问题时,有时要借助图象才能更好地解决相应问题.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询