高中数学,整实数x,y,z满足x2+y2+z2=1,则1/x2+1/y2+1/z2的最小值是多少
2个回答
展开全部
∵x2+y2+z2=1,
∴1/x²+1/y²+1/z²
=(1/x²+1/y²+1/z²)(x²+y²+z²)
=1+1+1+x²/y²+x²/z²+y²/x²+y²/z²+z²/x²+z²/y²
=3+(x²/y²+y²/x²)+(x²/z²+z²/x²)+(z²/y²+y²/z²)
∵x²/y²+y²/x²≥2 x²/z²+z²/x²≥2,z²/y²+y²/z²≥2
∴3+(x²/y²+y²/x²)+(x²/z²+z²/x²)+(z²/y²+y²/z²)≥9
当且仅当x=y=z=√3/3时,等号成立
即1/x²+1/y²+1/z²最小值为9
∴1/x²+1/y²+1/z²
=(1/x²+1/y²+1/z²)(x²+y²+z²)
=1+1+1+x²/y²+x²/z²+y²/x²+y²/z²+z²/x²+z²/y²
=3+(x²/y²+y²/x²)+(x²/z²+z²/x²)+(z²/y²+y²/z²)
∵x²/y²+y²/x²≥2 x²/z²+z²/x²≥2,z²/y²+y²/z²≥2
∴3+(x²/y²+y²/x²)+(x²/z²+z²/x²)+(z²/y²+y²/z²)≥9
当且仅当x=y=z=√3/3时,等号成立
即1/x²+1/y²+1/z²最小值为9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |