怎样用矩阵解方程组?
把系数矩阵与常数矩阵构成一个增广矩阵,用初等行变换化为行最简形矩阵,就得到了一个解系,令不同常数分别乘以解系的列向量即有基础解系。
比如:
设: I1=∫(-1/2,1/2)cos(2πt+θ)e^(-jωt)dt,I2=∫(-1/2,1/2)sin(2πt+θ)e^(-jωt)dt
则:I=I1+jI2=∫(-1/2,1/2)e^[j(2πt-ωt+θ)]dt=[e^(jθ)]∫(-1/2,1/2)e^[j(2π-ω)t]dt=[e^(jθ)]{e^[j(2π-ω)/2]-e^[-j(2π-ω)/2]}/[j(2π-ω)]
所以:I=[e^(jθ)]{-e^[-jω/2]+e^[jω/2]}/[j(2π-ω)]=[e^(jθ)][(2j)sin(ω/2)]/[j(2π-ω)]=[e^(jθ)][2sin(ω/2)]/(2π-ω)
所以:I1=2[(cosθ)sin(ω/2)]/(2π-ω)
所以:原式=2I1=4[(cosθ)sin(ω/2)]/(2π-ω)
扩展资料
矩阵的应用:
线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。
还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。
参考资料来源:百度百科-矩阵
2024-11-14 广告
2018-08-03 · 知道合伙人教育行家
“消元”主要通过加法、减法、除法和代入法将未知数消到剩一个为止;“降次”主要通过除法和因式分解法实现,降到未知数次数为一次为止。
方法二:先求一个方程组对应矩阵的秩,
将这两个方程组组成一个方程组,再求相应的秩,