高一数学求解…………
4个回答
展开全部
由题意,2sn=[(an+2)/2]的平方,sn=an平方/8+an/2+1/2,
则s(n-1)=a(n-1)平方+a(n-1)/2+1/2,两式相减得:
sn-s(n-1)=an=(an平方-an-1平方)/8+(an-an-1)/2,
化简得:(an+an-1)×(an-an-1-4)=0
因为数列由正数组成,故an+an-1不等于零,an-an-1-4=0
an=an-1+4,此数列为等差数列,an=a1+4(n-1),
又因为2s1=2a1=[(a1+2)/2]的平方,解得a1=2,所以此等差数列通项公式为:an=2+4(n-1)=4n-2
则s(n-1)=a(n-1)平方+a(n-1)/2+1/2,两式相减得:
sn-s(n-1)=an=(an平方-an-1平方)/8+(an-an-1)/2,
化简得:(an+an-1)×(an-an-1-4)=0
因为数列由正数组成,故an+an-1不等于零,an-an-1-4=0
an=an-1+4,此数列为等差数列,an=a1+4(n-1),
又因为2s1=2a1=[(a1+2)/2]的平方,解得a1=2,所以此等差数列通项公式为:an=2+4(n-1)=4n-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询