如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求
如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当四边形ADC...
如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当四边形ADCE是一个正方形时,试判断△ABC的形状.
展开
展开全部
(1)证明:∵在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分线,
∴∠MAE=∠CAE.
∴∠DAE=∠DAC+∠CAE=
∠MAC+
∠CAB=
×180°=90°,
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形.
(2)证明:∵四边形ADCE是正方形,
∴DC=AD,
∵在△ABC中,AB=AC,AD⊥BC,
∴△ADC为等腰直角三角形,
∴∠DAC=∠ACD=45°,
∴∠BAC=90°,
∴△ABC为等腰直角三角形,
即△ABC的形状是等腰直角三角形.
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分线,
∴∠MAE=∠CAE.
∴∠DAE=∠DAC+∠CAE=
1 |
2 |
1 |
2 |
1 |
2 |
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形.
(2)证明:∵四边形ADCE是正方形,
∴DC=AD,
∵在△ABC中,AB=AC,AD⊥BC,
∴△ADC为等腰直角三角形,
∴∠DAC=∠ACD=45°,
∴∠BAC=90°,
∴△ABC为等腰直角三角形,
即△ABC的形状是等腰直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询